Condensate Return Feedwater Systems
For Low and High Pressure Steam Boilers

Rite’s feedwater return systems are engineered for the safe and efficient storage and pumping of condensate and make-up water back to the boiler. Why Rite? Because all our receivers are made from 3/8” PVQ steel, which is up to double the thickness of other receivers. With corrosion as the number one reason why return tanks wear out and need replacing – Rite Condensate Return Systems offer up to twice the service life of other brands. With standard receiver capacities from 46 to 250 gallons and simplex to triplex pump sets, Rite has a return system for virtually any requirement. Check out our other standard features below and see why one choice stands out – the Rite Choice.

- Long-lasting 3/8” (.375) steel tank construction.
- Up to twice the head and shell thickness of other receivers for superior corrosion resistance.
- Vented, non-pressurized tank.
- Large 5” diameter cleanout facilitates sediment removal from receiver.
- Standard feedwater pumps are high performance Burks turbine or Goulds multistage centrifugal for long service life.
- NPSH suction piping to pumps includes shut-off valve and wye strainer.
- Automatic water make-up valve is float operated and mounted on top of the tank with built-in air gap provision. Eliminates the need for a backflow preventer.

- Sparge tube connection for preheating make-up water.
- Sight glass with brass gauge glass valves and rod protectors.
- Industrial grade thermometer.
- Structural steel base with anchor holes.
- Forklift skid design.
- Balanced lifting lug.
- Finished with super tuff metallic blue polyurethane paint.
Condensate Return Feedwater Systems

Data & Dimensions

Models CR50 & CR100

If supplied.

<table>
<thead>
<tr>
<th>REF.</th>
<th>DESCRIPTION</th>
<th>CR50</th>
<th>CR100</th>
<th>CR250</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Condensate Return</td>
<td>2" FNPT</td>
<td>2" FNPT</td>
<td>2" FNPT</td>
</tr>
<tr>
<td>B</td>
<td>Vent to Outdoors</td>
<td>2" FNPT</td>
<td>2" FNPT</td>
<td>2" FNPT</td>
</tr>
<tr>
<td>C</td>
<td>Spargem Tube Connection (If Used)</td>
<td>1/2" FNPT</td>
<td>1/2" FNPT</td>
<td>1/2" FNPT</td>
</tr>
<tr>
<td>D</td>
<td>Overflow</td>
<td>1" FNPT</td>
<td>1" FNPT</td>
<td>1 1/4" FNPT</td>
</tr>
<tr>
<td>E</td>
<td>Tank Drain</td>
<td>1" FNPT</td>
<td>1" FNPT</td>
<td>1" FNPT</td>
</tr>
<tr>
<td>F</td>
<td>Soft Water Make Up</td>
<td>1/2" FNPT</td>
<td>1/2" FNPT</td>
<td>1/2" FNPT</td>
</tr>
<tr>
<td>G</td>
<td>Spargem Tube Regulating Valve Temperature Sensor</td>
<td>1" FNPT</td>
<td>1" FNPT</td>
<td>1" FNPT</td>
</tr>
<tr>
<td>K</td>
<td>Boiler Feed Pump Discharge</td>
<td>1" FNPT</td>
<td>1" FNPT</td>
<td>2 1/4" FNPT</td>
</tr>
<tr>
<td>L</td>
<td>Length (INCHES)</td>
<td>36" (91 cm)</td>
<td>48.5" (123 cm)*</td>
<td>63" (160 cm)*</td>
</tr>
<tr>
<td>W</td>
<td>Width (INCHES)</td>
<td>26" (66 cm)</td>
<td>38" (97 cm)</td>
<td>36" (91 cm)</td>
</tr>
<tr>
<td>H</td>
<td>Height (INCHES)</td>
<td>38" (97 cm)</td>
<td>38" (97 cm)</td>
<td>70" (178 cm)</td>
</tr>
<tr>
<td>P</td>
<td>Piping (Removable) INCHES</td>
<td>9 1/2" (24 cm)</td>
<td>7" (18 cm)</td>
<td>N/A</td>
</tr>
<tr>
<td>R</td>
<td>Return Tank Capacity to Overflow GALLONS (LITERS)</td>
<td>46 GAL. (175 L)</td>
<td>104 GAL. (395 L)</td>
<td>240 GAL. (892 L)</td>
</tr>
<tr>
<td>S</td>
<td>Shipping Weight Approximate POUNDS (KILOGRAMS)</td>
<td>495 LBS (223 KG)</td>
<td>825 LBS (371 KG)</td>
<td>1465 LBS (665 KG)</td>
</tr>
<tr>
<td>M</td>
<td>Maximum Operating Weight (TANK FLOODED) POUNDS (KILOGRAMS)</td>
<td>877 LBS (395 KG)</td>
<td>1688 LBS (769 KG)</td>
<td>3457 LBS (1556 KG)</td>
</tr>
<tr>
<td>T</td>
<td>Suggested Max. Boiler Horsepower Capacity</td>
<td>50</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>X</td>
<td>Maximum Operating Feedwater Temperature °F (°C)</td>
<td>225° F (107° C)</td>
<td>225° F (107° C)</td>
<td>225° F (107° C)</td>
</tr>
</tbody>
</table>

* *ADD 12" (30 cm) FOR TRIPLEX SYSTEMS*
Condensate Return Feedwater Systems
Options

RECEIVING
Carefully inspect the equipment for any damage before signing bill of lading. Make sure the copper float ball inside the receiver (tank) has not come loose during shipment.

MAINTENANCE
Clean the pump suction wye strainer screen every 6 months. Clean out sediment from the bottom of the tank every few years as required. Be sure make-up valve shuts off tightly (no drips) when the float reaches its upward travel limit. If the tank overflows due to condensate return, adjust the float valve linkage to lower the make-up water level. Check float valve linkages every six months to be sure connections are tight. Lubricate float rod where it passes through guide bushing into tank every 6 months with WD-40 and make sure the rod is straight and travels smoothly between the stops. Make sure there is no stray voltage between the tank and ground. As little as 3 millivolts may cause electrolysis which can lead to premature tank corrosion.

TROUBLESHOOTING
If pump runs but the boiler at operating pressure doesn’t fill, install a pressure gauge with the same range as the boiler’s pressure gauge near the discharge of the pump as shown below. If the pump pressure fluctuates by more than a few P.S.I., the pump is probably cavitating (not getting enough water). Check the wye strainer screen, suction piping and sediment level in the bottom of the tank for any flow restrictions. If the pump pressure is constant but stays below the boiler pressure until the boiler pressure drops far enough for the pump to work, then either the check valve(s) in the feed line are failing or the pump impeller (Burks turbine only) needs to be adjusted for wear – see pump cut sheet for instructions.

STORAGE - LAY-UP
Empty tank completely using the drain fitting and a wet-dry vacuum. Remove all sediment and get the tank as dry as possible. Drain water from pump casing and leave dry. Post equipment lockout notice on receiver and pump disconnect(s).

RECOMMENDED PIPING

ALL BRASS PIPING FOR DIELECTRIC PROTECTION

WATER METER

WYE STRAINER

SOFT WATER MAKEUP

TOP VIEW

PUMP PRESSURE GAUGE

TO BOILER FEEDWATER CONNECTION

CHEMICAL FEED INJECTION PORT

SPRING LOADED CHECK VALVES

INSPECTION PLUG

FRONT VIEW

REV. 1/2015
T41 - C3 & C15 Motor Frames

<table>
<thead>
<tr>
<th>Horsepower</th>
<th>Frame</th>
<th>A</th>
<th>D</th>
<th>E</th>
<th>BA</th>
<th>2F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T41</td>
<td>1/3 ~ 5 ODP, TEFC, & EXP</td>
<td>56C</td>
<td>*</td>
<td>3 1/2</td>
<td>2 7/16</td>
<td>6 3/16</td>
</tr>
</tbody>
</table>
Condensate Return Feedwater Systems
Specification and Order Form

SN ____________________

Provide one Rite model CR- __________ Condensate Return Feedwater System. Steel receiver shall be 3/8" (.375") minimum head and shell thickness for corrosion resistance. Receiver (tank) shall have 2" vent connection for non-pressurized operation and shall have additional fittings for the following: condensate return, sparge tube, sparge tube temperature sensor, overflow, drain, float switch cover and cleanout opening, gauge glass valves, thermometer, (2) pump suction connections, and soft water make-up. All fittings shall be seal welded both inside and outside the tank. A sediment separator shall be incorporated into the receiver design. Receiver capacity shall be ______ gallons.

Pump suction piping shall be complete and consist of a wye strainer with 20-mesh stainless steel screen, brass shut-off valve and pump flange or union. The tank and suction piping shall deliver the required NPSH (net positive suction head) to the boiler feed pumps without cavitation or vortexing. Pump baseplates shall be through-bolted to feedwater system base without transmitting undue stress to the pump or suction piping. Pump arrangement shall be _______ (simplex, duplex or triplex). Pump(s) shall be __________ (Make) T41J-BF (Model), capable of delivering ______ GPM to a boiler operating at a maximum pressure of _______ PSIG.

Make-up water valve shall be float operated type and mounted on top of the tank with built-in air gap provision. It shall be readily accessible for service.

The following options shall also be required: (Click Options for pictures)

Simplex pump arrangement. (2 Pumps)

Panel Option # 1 – Duplex pump control panel, NEMA __, with rotary hand-auto switch, pump alternator and lead-lag feature to bring on both pumps when there is a low water condition. Includes rotary on-off switches, 1” indicating lights and contactors of sufficient rating for each single-phase fractional horsepower pumps. Supply power disconnect(s) and overload protection by others (single-phase fractional horsepower motors have built-in thermal overload protection). Wiring to pumps shall be furnished in liquid tight conduit.

Panel Option # 2 – Same as above except with hand-off-auto switch and without lead-lag feature. Pumps will automatically alternate each time there is a call for feedwater as above, but the second pump will not come on when there is a low water condition.

Panel Option # 3 – Same as Panel Option 1, except where 3 phase pump motors require IEC type motor starters with overload protection in lieu of single phase motor contactors. Specify voltage ______ phase _______ and cycles ______.

Panel Option # 4 – Same as Panel Option 2, except where 3 phase pump motors require IEC type motor starters with overload protection in lieu of single phase motor contactors. Specify voltage ______ phase _______ and cycles ______.

Panel Option # 5 – For triplex systems feeding two boilers with dedicated pumps and a third standby pump. Features NEMA 1 panel with rotary auto-off-pump #3 switches that allow pump #3 to operate in lieu of pump #1 or #2. With 1” indicating lights and contactors for each single-phase fractional horsepower pump.

Panel Option # 6 – Same as Panel Option #5, except where 3 phase pump motors require IEC type motor starters with overload protection in lieu of single phase motor contactors. Specify voltage ______ phase _______ and cycles ______.

Panel Option # 7 – Simplex pump control panel, NEMA __ with combination disconnect switch, circuit breaker, IEC starter with overload relay and Hand-Off-Auto switch with light. (Specify Motor Horsepower ______ Voltage______ Phase ___ and Cycles _____. Specify NEMA Rating _____.)

Panel Option # 8 – Duplex pump control panel, NEMA __, with组合 disconnect switch, circuit breaker, IEC starter with overload relay and Hand-Off-Auto switch with light. (Specify Motor Horsepower ______ Voltage______ Phase ___ and Cycles _____. Specify NEMA Rating _____.)

Panel Option # 9 – Triplex pump control panel, NEMA __ with combination disconnect switch, circuit breaker, IEC starter with overload relay and Hand-Off-Auto switch with light. (Specify Motor Horsepower ______ Voltage______ Phase ___ and Cycles _____. Specify NEMA Rating _____.)

Panel Option # 10 – For triplex systems feeding two boilers with dedicated pumps and a third standby pump. Features NEMA 1 panel with rotary auto-off-pump #3 switches that allow pump #3 to operate in lieu of pump #1 or #2. With 1” indicating lights and contactors for each single-phase fractional horsepower pump.

Panel Option # 11 – Simplex pump control panel, NEMA __ with combination disconnect switch, circuit breaker, IEC starter with overload relay and Hand-Off-Auto switch with light. (Specify Motor Horsepower ______ Voltage______ Phase ___ and Cycles _____. Specify NEMA Rating _____.)

Panel Option # 12 – Duplex pump control panel, NEMA __, with combination disconnect switch, circuit breaker, IEC starter with overload relay and Hand-Off-Auto switch with light. (Specify Motor Horsepower ______ Voltage______ Phase ___ and Cycles _____. Specify NEMA Rating _____.)

Panel Option # 13 – Triplex pump control panel, NEMA __ with combination disconnect switch, circuit breaker, IEC starter with overload relay and Hand-Off-Auto switch with light. (Specify Motor Horsepower ______ Voltage______ Phase ___ and Cycles _____. Specify NEMA Rating _____.)

Panel Option # 14 – For triplex systems feeding two boilers with dedicated pumps and a third standby pump. Features NEMA 1 panel with rotary auto-off-pump #3 switches that allow pump #3 to operate in lieu of pump #1 or #2. With 1” indicating lights and contactors for each single-phase fractional horsepower pump.

Panel Option # 15 – Simplex pump control panel, NEMA __ with combination disconnect switch, circuit breaker, IEC starter with overload relay and Hand-Off-Auto switch with light. (Specify Motor Horsepower ______ Voltage______ Phase ___ and Cycles _____. Specify NEMA Rating _____.)

Panel Option # 16 – Duplex pump control panel, NEMA __, with combination disconnect switch, circuit breaker, IEC starter with overload relay and Hand-Off-Auto switch with light. (Specify Motor Horsepower ______ Voltage______ Phase ___ and Cycles _____. Specify NEMA Rating _____.)

Panel Option # 17 – Triplex pump control panel, NEMA __ with combination disconnect switch, circuit breaker, IEC starter with overload relay and Hand-Off-Auto switch with light. (Specify Motor Horsepower ______ Voltage______ Phase ___ and Cycles _____. Specify NEMA Rating _____.)

Panel Option # 18 – For triplex systems feeding two boilers with dedicated pumps and a third standby pump. Features NEMA 1 panel with rotary auto-off-pump #3 switches that allow pump #3 to operate in lieu of pump #1 or #2. With 1” indicating lights and contactors for each single-phase fractional horsepower pump.

Panel Option # 19 – Simplex pump control panel, NEMA __ with combination disconnect switch, circuit breaker, IEC starter with overload relay and Hand-Off-Auto switch with light. (Specify Motor Horsepower ______ Voltage______ Phase ___ and Cycles _____. Specify NEMA Rating _____.)

Panel Option # 20 – Duplex pump control panel, NEMA __, with combination disconnect switch, circuit breaker, IEC starter with overload relay and Hand-Off-Auto switch with light. (Specify Motor Horsepower ______ Voltage______ Phase ___ and Cycles _____. Specify NEMA Rating _____.)

Panel Option # 21 – Triplex pump control panel, NEMA __ with combination disconnect switch, circuit breaker, IEC starter with overload relay and Hand-Off-Auto switch with light. (Specify Motor Horsepower ______ Voltage______ Phase ___ and Cycles _____. Specify NEMA Rating _____.)

Panel Option # 22 – For triplex systems feeding two boilers with dedicated pumps and a third standby pump. Features NEMA 1 panel with rotary auto-off-pump #3 switches that allow pump #3 to operate in lieu of pump #1 or #2. With 1” indicating lights and contactors for each single-phase fractional horsepower pump.

System is for a Rite Model _______________ S/N _______________ Make-up water valve shall be float operated type and mounted on top of the tank with built-in air gap provision. It shall be readily accessible for service.

Price: ____________________ Freight ____________________

Representative ______________________________

Job Name ______________________________

Ship to: ______________________________

Requested Ship Date ______________________________

Purchase Order # ______________________________

System is for a Rite Model _______________ S/N _______________ A# _______________ Scheduled ship date _______________ Other _______________

RITE ENGINEERING & MFG. CORP. COMMERCE, CALIFORNIA 90040 PHONE (562) 862-2135 FAX (562) 861-9821
www.riteboiler.com

Rev. 5/2015